comaro

compressors i

Руководство по эксплуатации для оператора

Винтовой компрессор

серия

MD

Перед запуском компрессора следует внимательно ознакомиться с данной инструкцией. Сохранить для дальнейшего использования.

Предупреждения и меры предосторожности

1

Предупреждения и меры предосторожности

Пожалуйста, внимательно прочтите настоящие инструкции перед началом установки воздушного компрессора. Это позволит избежать травм персонала и повреждение устройства.

1.1

Меры предосторожности для электрических устройств

1. После включения воздушного компрессора на него подается опасное напряже-
ние. Поэтому, только квалифицированный техник или инженер электрик, который
получил национальный сертификат, допускаются к установке устройства. Операторы
должны эксплуатировать устройство в соответствии с инструкциями настоящего
руководства, действующими национальными нормативами и мерами безопасности.

 Пользователь и монтажник должны предусмотреть цепь заземления и защиты устройства, которые должны удовлетворять национальным электрическим стандартам.

З. Необходимо установить отдельный размыкатель цепи (МССВ) или НРС выключатель (автомат защиты с характеристикой отсечки D) для каждого отдельного оборудования.

4. Перед началом проведения работ по техническому обслуживанию, пожалуйста, убедитесь, что электропитание выключено, что позволит избежать опасных ситуаций. Пожалуйста, повесьте на выключатель предупредительный плакат «Проводится техническое обслуживание, включать устройство запрещено».

1.2

Предупреждения для передающих элементов

1. Пожалуйста, не открывайте звуконепроницаемый корпус до того, как воздушный компрессор полностью не остановится, чтобы избежать любых рисков.

 Перед проведением работ по разборке и установке, пожалуйста, подождите, пока двигатель и вентилятор полностью не остановятся, и убедитесь, что электропитание отключено.

 Рекомендуется не надевать свободную одежду, чтобы избежать травм во время проведения техобслуживания.

1.3

Предупреждения касательно высокой температуры и давления

1. К компонентам трубопроводов или элементов, которые могут иметь высокую температуру (эти места отмечены соответствующими значками), запрещено прикасаться, чтобы избежать получения ожогов. Необходимо подождать, пока они полностью не остынут.

2. Любой компонент устройства может содержать воздушный поток высокого давления, поэтому необходимо полностью стравливать воздух до начала проведения разборки и установки. Избегайте направления воздушного потока под давлением в сторону персонала. Несоблюдение данной рекомендации приведет в серьезной травме.

3. Сжатый воздух, подаваемый данным устройством, предназначен только для промышленного использования. Он не предназначен для дыхания без надлежащего изменения конструкции устройства.

1.4

Меры предосторожности для дренажа устройства

Во избежании выхода из строя компрессора, в период эксплуатации еженедельно сливайте конденсат из воздушного ресивера перед запуском компрессора.

Осмотр и транспортировка

2 Осмотр и транспортировка

Для обеспечения прав покупателя, пожалуйста, внимательно прочтите данную главу. Пожалуйста, придерживайтесь методов, указанных в главе 2.4 при транспортировке устройства, чтобы избежать возникновения опасных ситуации и повреждения компонентов устройства.

2.1

Гарантия на компрессор

транспортировке, аварии, форс-мажорные обстоятельства, несоблюдение рекомендаций по эксплуатации и техобслуживанию, указанных в настоящем руководстве или неисправности, возникшие при обслуживании устройства сервисным инженером не авторизированного дилера, не покрываются настоящей гарантией.

Рекомендуется, чтобы все пользователи продукции предоставляли ее авторизированному дилеру для выяснения причин неисправностей и выполняли инструкции, указанные в главе Поиск и устранение неисправностей при возникновении внеш-

Винтовые воздушные компрессоры изготовлены под строгим контролем качества.

дителем. Однако неконтролируемые факторы, такие как поломки, возникшие при

Гарантийный период на воздушный компрессор составляет 12 месяцев от даты продажи. Неисправности во время гарантийного периода, возникшие по вине производителя, будут устраняться бесплатно после подтверждения поломок произво-

Рекомендуется, чтооы все пользователи продукции предоставляли ее авторизированному дилеру для выяснения причин неисправностей и выполняли инструкции, указанные в главе Поиск и устранение неисправностей при возникновении внештатных ситуаций. Не допускается вносить изменения в конструкцию системы или изменять основные настройки. Это позволит избежать серьезного повреждения воздушного компрессора.

2.2

Проверка спецификации и модели

Пожалуйста, сверьте технические параметры воздушного компрессора, которые указаны на табличке заводских характеристик, с характеристиками, указанными в вашем заказе.

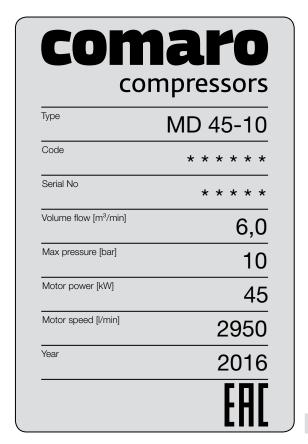


Рис. 2.1

Осмотр и транспортировка

2.3

Проверка аксессуаров

2.4

Предупреждения касательно транспортировки

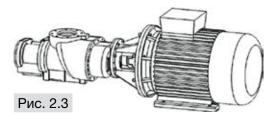

Примечание:

Не допускается нагромождать любые предметы на охладитель.

После получения воздушного компрессора сначала проверьте наличие полного комплекта аксессуаров. Все воздушные компрессоры оборудуются следующими компонентами:

- 1. Одно руководство по эксплуатации;
- 2. Один гарантийный талон;
- 3. Два ключа для дверки панели управления

Пожалуйста, используйте надлежащий вилочный погрузчик или кран, соответствующий весу воздушного компрессора. Не стойте под воздушным компрессором при его подъеме, и располагайтесь в безопасном месте, насколько это возможно. Компоненты устройства можно перемещать с помощью погрузчика с гидравлической системой. Также их можно транспортировать с помощью вилочного погрузчика, согласно инструкций, указанных на рисунке ниже. Кроме того, устройство можно поднимать с помощью однорельсового крана.



2.4.1

Метод передачи

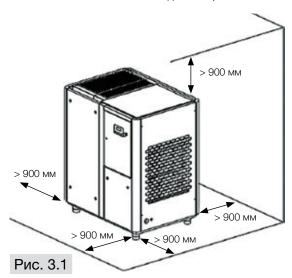
Компрессоры серии MD приводятся в действие с помощью соединительной муфты (смотрите рисунок 2.3). Энергия эффективно передается благодаря использованию соединительной муфты. Гибкая соединительная муфта также обеспечивает надежное совмещение двух валов. Допуск для передней кромки фланца двигателя по отношению к радиальному круговому выступу осевой линии двигателя, и соответствующей поверхности передней кромки двигателя относительно кругового выступа торцевой поверхности осевой линии двигателя показаны в таблице 2.1.

При температуре окружающей среды 45 °C, температура задней крышки двигателя не должна превышать 95 °C.

Диаметр передней кромки фланца (мм)	Допуск кругового выступа (мм)
60~95	0.0800
>95~230	0.1000
>230~450	0.1250
>450~680	0.1600

Табл. 2.1

3


Установка

3.1

Меры предосторожности для электрических устройств

Пожалуйста, внимательно прочтите данную главу перед началом установки. Это обеспечит правильную установку и надежную работу воздушного компрессора.

- Устанавливайте воздушный компрессор в помещении с хорошей вентиляцией и освещением. Избегайте установки в местах с повышенным содержанием пыли, влаги, ядовитых газов, металлической пыли, прямых солнечных лучей или атмосферных осадков.
- 2. Температура окружающей среды: +5 °C ~ +45 °C.
- 3. При установке воздушного компрессора вне помещения, устанавливайте его вдали от бойлеров и другого оборудования, которое может излучать тепло. Необходимо установить освещение, а также предусмотреть эффективную внешнюю вентиляцию.
 - 4. Необходимо обеспечить расстояние минимум 900 мм вокруг компрессора и над системой вентиляции для проведения технического обслуживания (Рис. 3.1).
- 5. Высота над уровнем моря не должна превышать 1000 метров.
- 6. Относительная влажность не должна превышать 95%.

3.2

Требования к месту установки

3.3

Требования к системе вентиляции и охлаждения Винтовой воздушный компрессор можно устанавливать на любой плите перекрытия, которая может выдержать вес компрессора без специального основания. При этом поверхность должна быть ровной и горизонтальной. При установке на стальную раму, транспортировке на кораблях или транспортных средствах, воздушный компрессор необходимо зафиксировать анкерными болтами и в то же время, использовать резиновые амортизаторы для защиты компонентов устройства от вибраций.

Система вентиляции должна обеспечивать необходимый температурный режим компрессора и в помещении компрессорной.

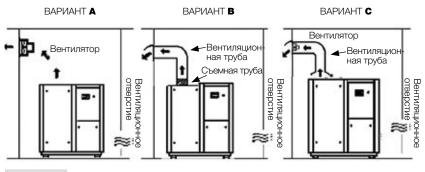


Рис. 3.2

Примечания:

Вариант А: Когда вентиляционная труба не используется для вентиляции, пожалуйста, обратитесь к параметрам вентиляции (1), указанным в таблице 3.1 для рекомендуемого объема внешней вентиляции для вентилятора, и, пожалуйста, установите вентилятор как можно выше.

Вариант В: При использовании вентиляционной трубы, и если вентилятор не установлен, тогда необходимо вычислить потерю давления объема вентиляции воздушного компрессора в вентиляционной трубе. Если потеря давления менее 20 Па, вентилятор устанавливать не нужно. Пожалуйста, установите съемную вентиляционную трубу прямо на вентиляционное отверстие воздушного компрессора (Рекомендуемая конструкция системы вентиляции показана на Рис. 3.2 – вариант А и вариант С).

Вариант С: Если потеря давления внутри вентиляционной трубы превышает 20 Па, тогда необходимо установить вентилятор; при этом расстояние между вентиляционной трубой и вентиляционным отверстием воздушного компрессора находится в диапазоне между 200~300 мм. Рекомендуемый объем вентиляции (2) указан в таблице 3.1. Вентилятор необходимо выбирать на основании объема вентиляции. Также необходимо принимать во внимание потерю давления и увеличение температуры нагнетаемого воздуха.

Метод охлаждения воздушного компрессора	С воздушным охлаждением						
Мощность двигателя, кВт	22	37	45	55	75	90	110
Объем вентиляции (1), м ³ /мин	270	450	540	675	900	1125	1350
Объем вентиляции (2), м ³ /мин	170	170	240	240	340	470	500
Мощность двигателя кВт	132	160	185	200	220	250	315
Объем вентиляции (1), м ³ /мин	1650	2000	2300	2500	2750	3125	3950
Объем вентиляции (2), м ³ /мин	500	750	750	750	1100	1100	1100
Метод охлаждения воздушного компрессора	С водяным охлаждением						
Мощность двигателя, кВт	55~90		110~200		220~315		
Объем вентиляции (1), м ³ /мин	250	250		500			

Табл. 3.1

3.5

⚠

Предупреждение

Примечание:

Требования

и обдува

к объему вентиляции

Запрещено запускать компрессор при открытой защитной панели.

Пожалуйста, внимательно прочтите данную главу перед началом установки. Это обеспечит правильную установку и надежную работу воздушного компрессора.

Сжатый воздух и электричество потенциально опасны. Пожалуйста, перед началом эксплуатации воздушного компрессора выполните следующие шаги.

- 1. Убедитесь, что электропитание отключено, выключатель заблокирован и вывешен предупреждающий плакат.
- 2. Давление в системе воздушного компрессора стравлено, компрессор остыл.
- (1) До этого не допускается снимать все виды крышек, гайки и устанавливать или снимать любые соединения или оборудование, поскольку жидкость высокой температуры и сжатый воздух в устройстве могут стать причиной серьезной травмы и привести к летальному исходу.
- (2) Блок управления для запуска двигателя воздушного компрессора опасен из-за наличия высокого напряжения. Поэтому все работы по установке должны выполняться при соблюдении действующих нормативов. Перед началом работы с электрической системой, убедитесь, что автомат защиты исправен, соответствует мощности компрессора и установлен в цепи подачи электропитания для воздушного компрессора. Лицо, отвечающее за установку оборудования, должно подключить все электрические компоненты устройства к надлежащему заземлению, обеспечить необходимое расстояние вокруг устройства для проведения технического обслуживания и установить молниеотвод.
- (3) Не допускается запускать воздушных компрессор, если давление нагнетания выше, указанного на табличке заводских характеристик. Несоблюдение данной рекомендации приведет к перегрузке двигателя и автоматическому выключению устройства.
- (4) Воздушный компрессор и сопутствующее оборудование можно чистить только рекомендуемым растворителем.
- (5) Установите запорный клапан (кран, винтель) (с блокировкой) на нагнетательном трубопроводе. Если между запорным клапаном и воздушным компрессором установлен предохранительный клапан, то он должен иметь требуемую пропускную способность, чтобы стравливать максимальный непрерывный воздушный поток в воздушном компрессоре.

- (6) Сброс давления через предохранительный клапан указывает, что в системе крайне высокое давление. Причина высокого давления должна немедленно устраняться.
- (7) Любое количество жидкости, присутствующее в воздухе, должно сводиться к минимуму.
- (8) Если необходимо установить воздушные резервуары, то их установку и техобслуживание необходимо выполнять в соответствии с действующими нормативами для сосудов под давлением.
- (9) Пожалуйста, перед запуском воздушного компрессора внимательно прочтите и полностью усвойте рекомендации по техобслуживанию и ремонту.
- (10) После ремонта и техобслуживания установите назад все защитные панели и кожухи.

3.6

Рекомендуемый трубопровод

3.6.1

Трубопровод

Воздухоохладитель в устройстве снижает температуру нагнетаемого воздуха до величины, которая значительно ниже температуры точки росы (для большинства окружающих условий). При этом будет конденсировано большое количество воды. В результате, дренажный клапан для конденсации воды рекомендуется установить на выходе воздуха из воздушного компрессора (дренажная система) и часть дренажной трубы необходимо подсоединить к дренажу на нижней раме.

Важно:

Для функционирования дренажной системы ее необходимо соблюдать уклон для слитва воды.

Примечания:

Для удобства проверки функционирования автоматического дренажного клапана, в трубопроводную систему необходимо установить часть прозрачной дренажной трубы. Если трубопроводная сеть повторно охлаждает воздух, то будет образовываться конденсационная вода. Поэтому в последней части трубопроводной системы необходимо установить еще один дренажный клапан.

Важно:

Диаметр воздухопроводов должен быть аналогичным по размеру, как и нагнетательный трубопровод воздушного компрессора. Все трубы и сочленения должны быть совместимы с максимальной рабочей температурой компонентов устройства, и их номинальное давление должно быть таким же, как давление в воздухомасляном бачке воздушного компрессора.

Необходимо проверить размер сочленений воздушного компрессора. Также нужно учесть длину и диаметр труб, количество и тип сочленений, а также клапанов, чтобы максимально эффективно использовать воздушный компрессор. Для обеспечения безопасности всей системы важно провести повторный осмотр заводской системы подачи воздуха при установке воздушного компрессора.

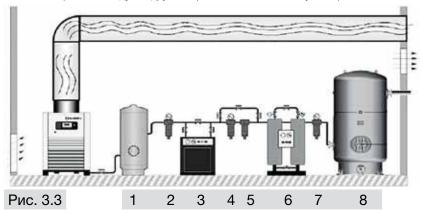
Некоторые проблемы, возникающие вследствие влаги:

- 1. Вода в воздушных компрессорах превращает в эмульсию смазочное вещество и затем блокирует воздушную головку;
 - 2. Ржавление труб и накопление грязи;
- 3. Блокировка измерительных приборов;
 - 4. Залипание управляющего клапана;
 - 5. Замерзание внешних воздухопроводов при низкой температуре окружающей среды.

 Любые проблемы, упоминаемые выше, вызывают частичную или полную остановку устройства.

Осушитель сжатого воздуха помогает предотвратить образование воды в воздухопроводах. Установка осушителя, фильтра, заднего охладителя и автоматического дренажного клапана позволит улучшить эффективность воздушной системы. Для разрешения проблем в системе, связанных с водой, необходимо использовать два осушителя, т.е. осушитель рефрижераторного типа и абсорбционного типа. Когда требуется обеспечить температуру точки росы системы сжатого воздуха на уровне 1-4 °С, обычно используется рефрижераторный осушитель, а когда температура точки росы должна быть ниже 1 °С, то будет использоваться абсорбционный осушитель.

Примечания:


Если отсутствует ресивер, то винтовой воздушный компрессор не может быть объединен с поршневой компрессионной системой. Рекомендуется соединять два типа воздушных компрессоров с ресивером, используя при этом отдельные трубопроводы. Когда параллельно установлено несколько воздушных компрессоров, необходимо установить запорный клапан и дренажный клапан для каждого воздушного компрессора перед ресивером.

Примечание:

- 1. Когда параллельно установлено несколько воздушных компрессоров, в каждом нагнетательном трубопроводе необходимо установить дренажное устройство.
- 2. В период эксплуатации, еженедельно сливайте конденсат из воздухомасляного бачка и ресивера.

Это поможет предотвратить превращение в эмульсию смазочного вещества компонентов устройства, и воздушный компрессор не будет поврежден из-за ухудшения качества масла.

- 3. Для обеспечения надежного функционирования системы, дренажная функция пост обрабатывающих устройств и дренажного оборудования должна периодически проверяться.
- 1. В зависимости от диаметра выходного трубопровода воздушного компрессора, необходимо использовать аналогичный или больший диаметр для последующего трубопровода, подсоединенного к воздушному резервуару, что поможет избежать падения давления.
- 2. Для удобства техобслуживания и ремонта в будущем, выходной трубопровод воздушного компрессора необходимо подсоединить к воздушному резервуару через фланец (муфту и гибкую вставку).
- 3. При установке трубопровода необходимо учесть требования к гибкости. Также необходимо избежать сопротивления трубопроводных линий. Для воздухопровода необходимо предусмотреть наклон величиной 1/100, чтобы вода в трубопроводных линиях могла нормально сливаться.
- 4. Во избежание конденсации воды в трубопроводе и негативного воздействия на работоспособность оборудования, обычно после воздушного резервуара устанавливают осушитель с соответствующей системой обработки воздуха для удаления влаги.
- Пожалуйста, обратитесь к рис. 3.3 для стандартного расположения воздушной системы.
- Пожалуйста, обратитесь к производителю для получения информации по специальным системам обработки воздуха с другими требованиями к качеству или применению.

Цифры на рис. 3.3 соответствуют следующим компонентам:

1. Воздушный резервуар	5. Масляный фильтр
2. Предварительно установленный фильтр	6. Абсорбционный осушитель
3. Рефрижераторный осушитель	7. Фильтр тонкой очистки
4. Фильтр тонкой очистки	8. Воздушный резервуар

3.6.2

Рекомендации для воздухопроводов

3.7

Меры безопасности для электрической установки и системы управления

3.7.1

Меры предосторожности для электрической установки

Перед установкой электрического оборудования рекомендуется повторно просмотреть инструкции по безопасности, указанные в данном руководстве. Пожалуйста, посмотрите параметры, указанные на табличке заводских характеристик воздушного компрессора или двигателя. В них указанно рабочее давление, максимальное давление нагнетания, а также характеристики и производительность двигателя. Убедитесь в том, что напряжение питания соответствует номинальному значению, указанному на табличке заводских характеристик воздушного компрессора. Откройте дверку панели управления и убедитесь, что все приборы и провода правильно соединены. Убедитесь также в правильности питания трансформатора панели управления. Проверьте надежность подсоединения двигателя и цепи управления, затем закройте дверку панели управления.

Для обеспечения безопасной работы устройства выберите надлежащие провода (кабели) для источника электропитания, линии заземления и автомата защиты. Если провода источника электропитания не удовлетворяют вышеуказанным требованиям, тогда необходимо их заменить. В противном случае воздушный компрессор не получится запустить из-за падения напряжения.

Мощность двигателя, кВт	22	37	45	55	75	90	110	132	160	185	250	315
Ток полной нагрузки	42	68	81	96	133	163	194	233	262	387	460	544
Сечение линии электропитания, (мм²)	16	35	50	50	95	120	120	2*70	2*70	240	2*185	2*185
Выключатель NFB AT	50	100	125	125	200	224	250	300	315	500	630	630

Табл. 3.2

Дополнительные примечания:

- 1. Для воздушного компрессора предпочтительно иметь только отдельную электрическую систему.
- 2. Необходимо убедиться в правильном распределении мощности воздушного компрессора. Линия заземления должна быть проверена, и ее нельзя размещать прямо на воздухопроводе или на трубопроводе охлаждающей воды.
- З. Воздушный компрессор необходимо заземлить, чтобы предотвратить утечку электричества и последующие риски.
 - 4. Вследствие ограничения размеров панели управления, отдельные провода не должны быть слишком толстыми. Если сечение провода электропитания слишком большое, тогда его необходимо заменить на провод, который состоит из двух и более частей. При использовании нескольких проводов, отдельная линия электропитания должна быть трехфазной и симметричной, в противном случае кабель будет перегреваться и возникнет диспропорция комбинированного напряжения. Входное напряжение питания не должно превышать номинальное напряжение на ±10 °C, и разность между фазами должна быть в пределах 3%. Воздушный компрессор должен иметь соответствующую линию заземления. В противном случае в системе управления будут появляться помехи и в результате возникнет нарушение сигнала. Если проблему с заземлением нельзя устранить, тогда показания температуры, тока и давления в контроллере могут значительно колебаться.

Примечания:

- 1. Параметры напряжения питания: 380 В, 50 Гц
- 2. Диаметр заземляющего проводника подвижного электрического устройства должен быть аналогичным линии электропитания, если он находится внутри трубки или кабеля.

3.7.2

Главный двигатель

Приводной двигатель должен вращаться в направлении, обозначенном на корпусе винтового блока. При проверке направления вращения двигателя, время срабатывания контакта должно быть как можно меньше. После нажатия кнопки запуска, немедленно нажмите на кнопку аварийного останова. Если направление вращения двигателя неправильное, тогда выключите и заблокируйте главный выключатель электропитания. После этого следует повесить на выключатель предупредительный плакат «Проводится техническое обслуживание, включать устройство запрещено». Откройте дверку панели управления и поменяйте местами любые два вывода (R, S, T) на стартере. После этого закройте дверку панели управления и снова проверьте направление вращения двигателя.

3.7.3

Вентиляторный двигатель

3.7.4

Система управления

Проверьте, что вентилятор выдувает в направлении от устройства. Если направление вращения неправильное, тогда выключите и заблокируйте главный выключатель электропитания. После этого следует повесить на выключатель предупредительный плакат «Проводится техническое обслуживание, включать устройство запрещено». Затем поменяйте местами любые два вывода пускателя. После этого закройте дверку панели управления и снова проверьте направление вращения двигателя.

- 1. Запуск двигателя (напряжение падает или запуск по схеме звезда Y). В этот момент клапан управления всасыванием полностью закрыт, и электромагнитный клапан разгрузки (нормально открытый) будет обесточен и полностью открыт. Сторона впуска воздуха будет находиться в состоянии высокого вакуума. Наличие смазочного вещества, требуемого в камере сжатия и подшипниках, будет обеспечиваться разницей давления между камерой сжатия и воздухомасляным бачком.
- 2. Работа двигателя при полном напряжении (полное напряжение или запуск по схеме треугольник Δ).

Когда двигатель переходит в состояние работы при полном напряжении, электромагнитный клапан разгрузки (нормально открытый) будет находиться под напряжением, и закрыт. В этот момент давление в воздухомасляном бачке постепенно увеличивается. Клапан управления всасыванием постепенно открывается и давление в воздухомасляном бачке быстро увеличивается, поскольку клапан управления всасыванием полностью открыт, и воздушный компрессор работает при полной нагрузке. Когда давление увеличивается до определенного уровня, клапан минимального давления открыт и воздух стравливается из системы.

3. Нагрузка/Разгрузка

Если давление непрерывно увеличивается до требуемого значения давления разгрузки, электромагнитный клапан разгрузки (нормально открытый) будет активирован и начнется выпуск воздуха. Клапан управления всасыванием закрыт, и воздух выходит через перепускную трубу. Давление в воздухомасляном бачке начинает сбрасываться, и клапан минимального давления быстро закрывается, чтобы изолировать давление системы. Когда давление системы. Когда давление системы падает до давления нагрузки, электромагнитный клапан разгрузки (нормально открытый) будет активирован и клапан управления всасыванием будет полностью открыт. Воздушный компрессор будет снова находиться под нагрузкой.

4. Останов устройства.

После нажатия кнопки «STOP» (СТОП), электромагнитный клапан разгрузки (нормально открытый) будет активирован и начнется выпуск воздуха. Впуск воздуха закрыт, и клапан минимального давления закрыт. Давление в воздухомасляном бачке начинает сбрасываться и будет изолироваться от давления системы. Когда давление в бачке сброшено и достигает давления частичной нагрузки, двигатель незамедлительно прекращает работу. Через 20 секунд, двигатель полностью останавливается. Давление в воздухомасляном бачке постепенно снижается до нуля.

- 5. Выключение из-за высокой температуры или перегрузки двигателя. Если температура нагнетания выше 105 °С или произошла токовая перегрузка, предохранительное устройство двигателя будет активировано. Электропитание будет отключено и двигатель мгновенно остановится. Одновременно с этим клапан управления всасыванием будет закрыт, и электромагнитный клапан разгрузки (нормально открытый) будет полностью открыт. Клапан минимального давления закрывается, и давление в воздухомасляном бачке снизится до нуля. Аварийный останов используется только в экстренных ситуациях. Частое использование данного режима приведет к повреждению или неправильной работе системы.
- 6. Система автоматического останова для продолжительной разгрузки Когда потребление воздуха системой снижается, воздушный компрессор будет продолжать работать без нагрузки. Если время работы без нагрузки больше заданного времени, воздушный компрессор автоматически остановится. Когда потребление воздуха системой увеличивается, давление системы будет снижаться, и воздушный компрессор запустится автоматически, чтобы добавить количество воздуха. Компрессор остановится на 20 минут после автоматического останова продолжительной разгрузки. После останова двигателя, его можно запустить снова через 5 минут в качестве защитной меры.

3.7.5

Цепь электрической системы

Электрическое управление воздушным компрессором можно разделить на две системы. Одна из них – система внутреннего управления, другая – часть панели запуска. Панель запуска обычно представляет собой схему запуска звезда-треугольник Y-Δ, используемую обычными компрессорами, в то время как часть системы внутреннего управления представляет собой электрическую систему. Внутренняя схема электрической системы управления более сложная, поэтому она далее не описывается в этой главе. Пожалуйста, обратитесь напрямую в центр обслуживания покупателей для получения более подробной информации.

Знакомство с системой

Знакомство с системой (рис. 4.1 и 4.2)

4.1

Система в сборе

Воздушный компрессор состоит из следующих основных компонентов:

Воздушный компрессор работает от источника электропитания, и представляет собой одноступенчатую винтовую воздушно-компрессорную установку. Вся система включает другие пост обрабатывающие устройства, такие как ресивер, рефрижера-

4.2

Компоненты воздушного компрессора 1. Воздушный фильтр

2. Компрессор

З. Сепаратор для тонкой очистки

торный осушитель и фильтр.

- 4. Клапан минимального давления
- 5. Воздухоохладитель
- 6. Воздухомасляный бачок

Воздух поступает в воздушный компрессор, и далее проходит через воздушный фильтр, а также через клапан управления всасыванием. Сжатие в винтовом воздушном компрессоре выполняется посредством пары роторов (ведущим и ведомым). Два ротора установлены на двух параллельных осях соответственно в высокопрочном чугунном корпусе. Впуск и выпуск воздуха расположены на каждой стороне камеры соответственно. Желоб ведомого ротора соединен с и управляется ведущим ротором. Конические подшипники используются на стороне нагнетания для сопротивления осевому усилию. Масловоздушная смесь выпускается и подается в систему отделения масла. Эта система выделяет большую часть смазки. Смазка возвращается назад в систему смазки. Система охлаждения сжатого воздуха включает теплообменник и дренажную систему. При охлаждении большая часть влаги в выпускаемом воздухе будет конденсироваться и затем сливаться через конденсатоотводчик. При разгрузке, электромагнитный клапан разгрузки открывается, а клапан управления всасыванием закрывается. Сжатый воздух возвращается в клапан управления всасыванием через перепускную трубу.

4.3

Система смазки

Масло, которое перемещается вследствие разности давления, выходит из воздухомасляного ресивера, сепаратора для тонкой очистки и подается в охладитель. Клапан терморегулирования управляет температурой нагнетания, чтобы она была выше, чем температура точки росы. Когда выполняется холодный запуск воздушного компрессора, некоторое количество смазки не поступает в охладитель. Если температура системы увеличивается до уровня, который выше требуемого значения клапана терморегулирования, масло будет проходить через охладитель. Когда компрессор запущен при высокой температуре окружающей среды, вся смазка будет проходить через охладитель. Выходная температура охладителя масла воздушного компрессора контролируется так, чтобы конденсация влаги в воздушномасляном ресивере была снижена. Для поддержания высокой температуры смазки, температура выходящей масловоздушной смеси должна находиться на уровне выше, чем температура точки росы. Масло возвращается в винтовой блок через масляный фильтр.

4.4

Система выделения масла

Воздухомасляный ресивер использует метод ударной нагрузки. Масловоздушная смесь поступает на вход и ударяется о кромку воздухомасляного ресивера, который обеспечивает сброс скорости смеси. Далее масляные капли выделяются из масловоздушной смеси. Внутри корпуса воздухомасляного ресивера центробежная сила позволяет выделять масляные капли. Капли диаметром более 1 мкм можно эффективно выделять при помощи центробежной силы.

Примечание:

Пожалуйста, установите водяной фильтр Y-образной формы перед впуском охлаждающей воды в моделях с водяным охлаждением. Это обеспечит правильную работу охладителя.

Знакомство с системой

4.5

Блок-схема системы

Номер Наименование Воздушный фильтр 1 2 Клапан управления всасыванием 3 Воздушная головка 4 Воздушномаслянный ресивер 5 Сепаратор для тонкой очистки 6 Клапан минимального давления Охладитель сжатого воздуха 7 (с воздушным или водяным охлаждением) 8 Челночный клапан (опционально) Охладитель масла 9 (с воздушным или водяным охлаждением) 10 Масляный фильтр 11 Клапан терморегулирования 12 Маслосливной кран 13 Предохранительный клапан Клапан слива воды (опционально) 14 конденсатоотводчик 15 Обратный клапан для возврата масла 16 Соединительная муфта 17 Двигатель 18 Обратный клапан 19 Дроссельный клапан Электромагнитный клапан разгрузки 20 (нормально открытый) 21 Дозировочный клапан (опционально) T1 Датчик температуры нагнетания P2 Датчик давления системы

Воздушный контур
Масляный контур
Масловоздушный контур

Контур управления

Воздушный компрессор работает от источника электропитания, и представляет собой одноступенчатую винтовую воздушно-компрессорную установку. Вся система включает другие пост обрабатывающие устройства, такие как баллон для хранения газа, рефрижераторный осушитель и фильтр.

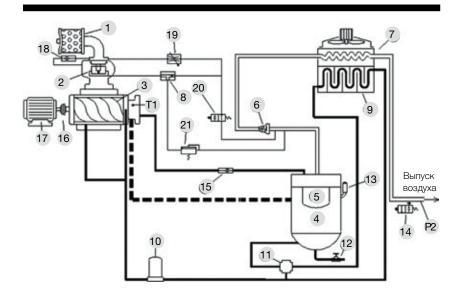


Рис. 4.1 Блок-схема модели с воздушным охлаждением

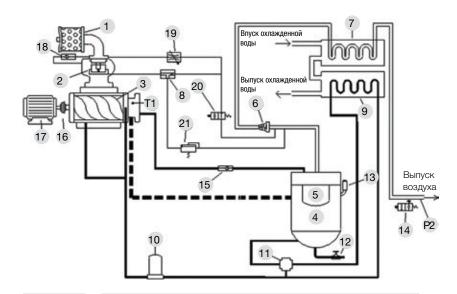


Рис. 4.2 Блок-схема модели с водяным охлаждением

Описание микроконтроллера

5.1

Описание кнопок и индикаторов

START (CTAPT): предназначена для запуска компрессора

STOP (СТОП): предназначена для останова компрессора

RESET (СБРОС): предназначена для сброса

UP (ВВЕРХ): предназначена для пролистывания меню вверх DOWN (ВНИЗ): предназначена для пролистывания меню вниз

LEFT (ВЛЕВО): предназначена для пролистывания меню влево

RIGHT (ВПРАВО): предназначена для пролистывания меню вправо

ENTER (ВВОД): подтверждение ввода настройки

POWER (ПИТАНИЕ): индикатор питания

RUN (РАБОТА): индикатор работы компрессора

СОМ (ПОСЛЕДОВАТЕЛЬНЫЙ ПОРТ): индикатор активности порта RS-485

5.2

Дисплей состояния

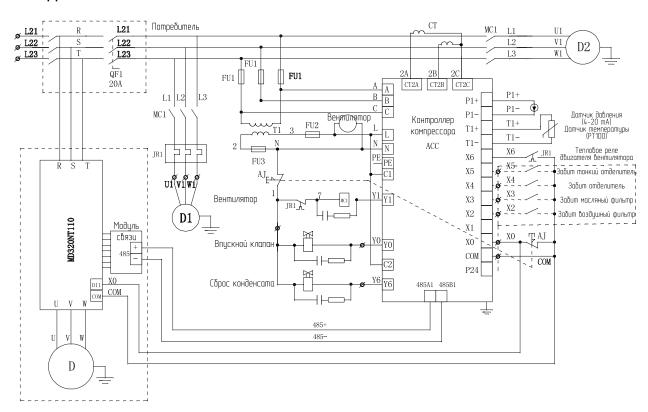
На дисплее максимально может отображаться 10 сообщений об ошибках. Если ошибок больше 10, тогда одна из предыдущих ошибок удаляется.

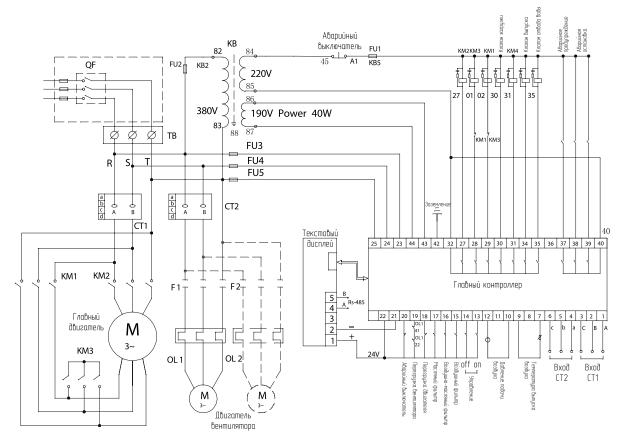
T 000 °C P 0.01Mpa State (Состояние) Phase Sequence Error	Single 1-1 (Одиночн Air Adjustment (Регули Stop (Останов) (Ошибка последовател	Данная страница отображается при по- даче питания на контроллер. Если ото- бражается сообщение "Phase Sequence Error" (Ошибка последовательности фаз), тогда проверьте правильность подключения фазных проводов.	
Current (Ток) A phase (фаза A) B phase (фаза B) C phase (фаза C)	A phase (фаза A) 000.0 A В phase (фаза B) 000.0 A		Нажмите кнопку UP/DOWN (ВВЕРХ/ВНИЗ) для проверки тока главного двигателя и вентиляторного двигателя.
Unload pressure (Давление разгрузки) Load pressure (Давление нагрузки) Total run time (Общее время работы) Load run time (Общее время под нагрузкой)		0.80 MPa 0.70 MPa 000000 h 00 m 000000 h 00 m	
Function select (Выбо) Maintenance (Техобсл Fault record (Регистра User set(Пользовател Factory set (Заводски	уживание) ция ошибок) ьские настройки)		Выберите "User set" (Пользовательские настройки).
Passwords: **** (Пароли)			Enter paswords (Введите пароли).

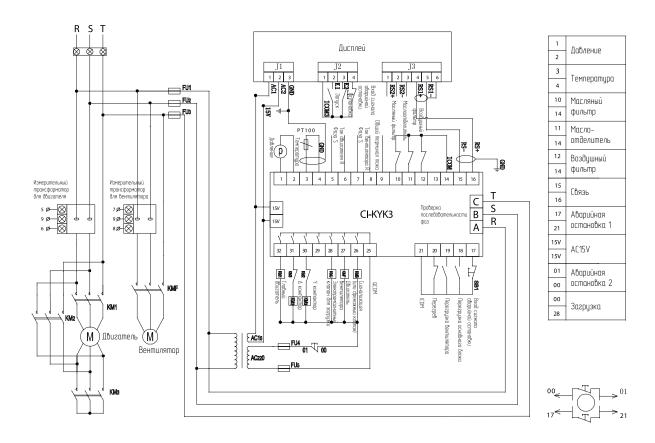
5.3

Параметры пользовательских настроек

1-й уровень меню	2-й уровень меню	Диапазон параметров	Выполняемая функция
	Давление разгрузки	0.3-1.7 МПа	Значения давления для разгрузки
	Давление нагрузки	0.1 -1.6 МПа	Значения давления для нагрузки
	Температура при запуске вентилятора	60-100 °C	Управление вентилятором при запуске
Управление	Температура при останове вентилятора	50-100 °C	Управление вентилятором при останове
	Коммуникационный режим	Последовательный / широковещательный	Два коммуникационных режима
	Номер устройства	1-32	Номер устройства при использований нескольких устройств
	Пароли пользователя	0-9999	Пользователь может ввести пароли
	Y - Δ время	5-40 секунд	Y - Δ время
	Время задержки загрузки	5-30 секунд	После запуска данное время задержки используется для запуска и выполнения измерения тока.
	Останов длительного режима разгрузки	4-60 минут	Останов длительного режима без нагрузки
	Время задержки разгрузки перед остановом	10-60 секунд	Время задержки перед остановом
	Последовательное время запуска	5-90 секунд	Время запуска без проведения мульти контроля
Последователь- ность / время	Последовательное время разгрузки	5-90 секунд	Время разгрузки без проведения мульти контроля
	Последовательное время обмена	50-5000 часов	Время обмена между несколькими устройствами без проведения мульти контроля
	Время включения дренажной системы	0-30 секунд	Время работы дренажной системы
	Время выключения дренажной системы	1-10 минут	Интервальное время дренажной системы
	Дата		Текущая дата
	Время		Текущее время
	Замена воздушного фильтра	3000 часов	Приблизительной срок службы воздушного фильтра
	Замена сепаратора для тонкой очистки	3000 часов	Приблизительной срок службы при использование масла KRAFT-OIL P46 сепаратора для тонкой очистки
	Замена масла	500-3000 часов	Приблизительной срок службы масла при использование KRAFT-OIL P46
	Добавление смазки	1500 часов	Приблизительное время добавления новой смазки
Техобслуживание	Замена масляного фильтра	500-3000 часов	Приблизительной срок службы масляного фильтра
	Время использования воздушного фильтра	0-9999 часов	
	Время использования сепаратора для тонкой очистки	0-9999 часов	
	Время использования масла	0-9999 часов	
	Время использования смазки	0-9999 часов	
	Время использования масляного фильтра	0-9999 часов	


ВНИМАНИЕ!


При использование синтетического масла KRAFT-OIL S46 допускается увеличение срока использования масла и сепаратора тонкой очистки до 6000 часов.



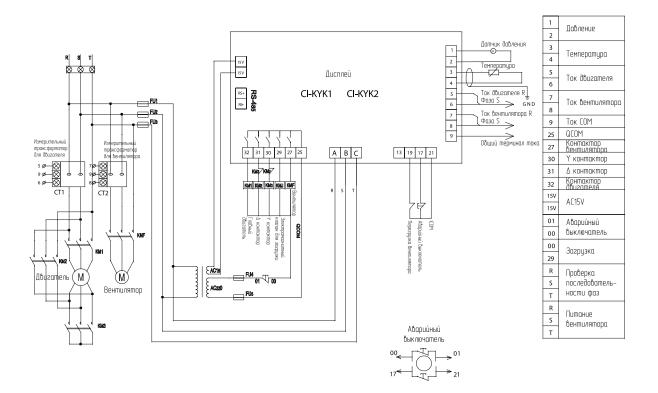

5.4

Схема подключения

5.5

Эксплуатация

5.5.1

Нажмите кнопку «START» (Старт):

(Ү-∆ Запуск звезда-треугольник)

После подачи питания на контроллер, он выполняет самодиагностику в течение 3 секунд. В течение этих 3-х секунд кнопка «START» не работает. После выполнения самодиагностики нажмите кнопку «START», далее запустится компрессор: на КМЗ и КМ1 будет подано питание во время пускового периода Ү. После переключения от Ү к Δ, КМЗ отключается (КМ2, КМЗ заблокированы), и на КМ2 подается питание.

5.5.2

Автоматический запуск:

После переключения в состояние Δ на период времени задержки, происходит подача электропитания на электромагнитный клапан разгрузки (нормально открытый). Компрессор начинает работать под нагрузкой, давление в воздухомасляном бачке возрастает. Когда давление достигает верхнего предела (давление разгрузки), тогда происходит снятие питания с электромагнитного клапана разгрузки (нормально открытый). Компрессор начинает снимать нагрузку; когда давление достигает нижнего предела (давление нагрузки), тогда происходит подача электропитания на электромагнитный клапан разгрузки (нормально открытый). Компрессор начинает работать под нагрузкой и давление увеличивается. Если давление в системе не достигает нижнего предела во время разгрузки в течение длительного промежутка времени, контроллер активирует функцию "останов длительного режима разгрузки" для останова двигателя.

5.5.3

Стандартный останов:

5.5.4

Отказ от частого запуска

5.5.5

Останов при неисправности и аварийный останов

Нажмите кнопку "STOP" (Стоп), при этом происходит снятие питания с электромагнитного клапана разгрузки (нормально открытый). После периода времени задержки, магнитный пускатель размыкается. Главный двигатель и вентиляторный двигатель останавливаются. Компрессор может быть повторно запущен с помощью кнопки"START" (Старт).

При стандартном останове, останове при длительном режиме разгрузки, или останове при аварии, двигатель не сможет запуститься сразу. В системе установлено время задержки во избежание часто повторяющего запуска. На дисплее контроллера отображается время задержки (например, 199 секунд). Только по истечению данного времени двигатель запустится повторно.

Если двигатель неправильно функционирует или температура нагнетания слишком высокая, тогда контроллер остановит компрессор. Компрессор может быть запущен повторно только после выявления и полного устранения причин неисправности. Кнопка аварийного останова используется во время возникновения аварийных ситуаций.

5.6

Список аварий

Авария	Состояния устройства, отображаемые на дисплее	Сигнал	Состояние компрессора
Время замены воздушного фильтра	Замена воздушного фильтра	Аварийный сигнал воздушного фильтра	Авария, без останова
Время замены масляного фильтра	Замена масляного фильтра	Аварийный сигнал масляного фильтра	Авария, без останова
Время замены сепаратора для тонкой очистки	Замена сепаратора для тонкой очистки	Аварийный сигнал сепаратора для тонкой очистки	Авария, без останова
Время для повторного добавления смазки	Добавление смазки		Авария, без останова
Время для замены масла	Замена масла		Авария, без останова
Низкая окружающая температура	Низкая окружающая температура		Авария, без останова
Высокая окружающая температура	Высокая окружающая температура		Авария, без останова
Высокая температура нагнетания	Высокая температура нагнетания	Аварийный сигнал высокой температуры нагнетания	Авария и останов
Датчик температуры отключен	Датчик температуры неисправен	Аварийный сигнал датчика температуры	Авария и останов
Датчик давления отключен	Датчик давления неисправен	Аварийный сигнал датчика давления	Авария и останов
Перегрузка главного двигателя	Перегрузка главного двигателя	Аварийный сигнал перегрузки главного двигателя	Авария и останов, для запуска потребуется дождаться окончания времени задержки
Перегрузка вентиляторного двигателя	Перегрузка вентиляторного двигателя	Аварийный сигнал перегрузки вентиляторного двигателя	Авария и останов
Давление нагнетания выше предельного значения	Высокое давление нагнетания		Авария и останов
Перекрестное подключение фаз, обрыв фазы	Ошибка последовательности фаз	Аварийный сигнал ошибки последовательности фаз	Авария и останов

comaro

Описание микроконтроллера

5.7

Средства защиты устройства

Неисправность	Видимая причина	Основная причина
Короткое замыкание	Короткое замыкание главного двигателя или вентиляторного двигателя	Короткое замыкание или неправильная настройка номинального тока
Блокировка	Главный или вентилятор- ный двигатель заблоки- рованы	Слишком высокая механическая нагрузка, повреждение подшипников и другие механические неисправности
Перегрузка	Перегрузка по току главного двигателя или вентиляторного двига-теля	Слишком высокая механическая нагрузка, повреждение подшипников и другие механические неисправности
Обрыв фазы	Обрыв фазы главного или вентиляторного двигателя	Отсутствует питание, неисправен магнитный пускатель или обрыв фазы двигателя
Нарушение баланса	Нарушение баланса главного или вентиляторного двигателя	Магнитный пускатель в двигателе неисправен или поврежден

5.7.1

Электрическая защита

5.7.2

Тепловая защита

5.7.3

Защита от неправильной последовательности фаз

5.7.4

Высокое давление нагнетания

5.7.5

Неисправность датчика

Защита от короткого замыкания, блокировки, перегрузки, обрыва фазы и нарушения баланса.

Защита температуры нагнетания: когда температура нагнетания достигает верхнего предела, контроллер подает аварийный сигнал и останавливает компрессор. На дисплее отображается сообщение "High discharge temperature" (Высокая температура нагнетания).

Если три фазы питания подключены не так, как указано в настройках контроллера, тогда отображается сообщение "phase sequence error" (ошибка последовательности фаз). Контроллер не запустит двигатель. Поменяйте местами две фазы для проверки направления вращения.

Когда давление нагнетания достигает верхнего предела, контроллер подает аварийный сигнал и останавливает компрессор. На дисплее отображается сообщение "High discharge pressure" (Высокое давление нагнетания).

■ Если датчик давления или температуры отключен, тогда контроллер подает аварийный сигнал и останавливает компрессор. На дисплее отображается сообщение "Temperature sensor fault" (Неисправен датчик температуры) или "Pressure sensor fault" (Неисправен датчик давления).

Основные компоненты системы

Основные компоненты системы

6.1

Воздушный фильтр

6.2

Клапан управления всасыванием

6.3

Воздухомасляный ресивер

64

Сепаратор для тонкой очистки

Это сухой бумажный фильтр, который предназначен для фильтрации воздуха, подаваемого через воздушную головку. Качество фильтра влияет на срок службы смазки, масляного фильтра, сепаратора для тонкой очистки и подшипников. Если воздушный фильтр заблокирован, тогда снижается количество подаваемого воздуха, что в результате приводит к уменьшению объема подаваемого воздуха. Рекомендуется заменять фильтр в зависимости от окружающих условий и времени эксплуатации, отображаемых на дисплее контроллера. Микроконтроллер напомнит о необходимости замены и установки нового фильтра в зависимости от настроек времени. Когда на дисплее появится предупреждающее сообщение, немедленно замените старый фильтр.

Это клапан поршневого типа. Используя поток воздуха, который входит в поршень через его нижнюю часть, можно контролировать количество подаваемого воздуха, путем перемещения поршня. Чем больше воздуха подается в нижнюю часть поршня, тем больше поршень перемещается. Объем подаваемого воздуха снижается, если отверстие всасывания управляющего клапана уменьшается. При неблагоприятных условиях объем подаваемого воздуха увеличивается.

В дополнение к функции хранения масла, большинство масел могут отделяться с помощью ударной нагрузки и центробежной силы. Эффективность отделения оказывает влияние работу сепаратора для тонкой очистки масла и на содержание масла в сжатом воздухе. Индикатор уровня масла располагается с боковой стороны воздухомасляного ресивера для удобного наблюдения за уровнем масла. Дренажный клапан располагается в нижней части воздухомасляного ресивера. Он используется для замены масла во время регламентного техобслуживания и слива конденсационной воды в масле перед запуском устройства.

Он изготовлен из двухслойных стеклянных волокон, и может улавливать молекулы масла в сжатом воздухе. Отфильтрованное масло сохраняется в центральном желобе, и перетекает обратно в воздушный компрессор через маслоотводящую трубу. Содержание масла в воздухе контролируется до величины 3 мг/м³, когда устройство работает при номинальном давлении. Эффективность и срок службы сепаратора для тонкой очистки масла зависит от загрязнения окружающей среды, качества и типа смазочного вещества, эффективности масляного фильтра и количества конденсационной воды в воздухомасляном бачке. Если сепаратор заблокирован илиэффективность отделения снижена, тогда содержание масла в воздухе увеличивается. Это вызывает перенос избыточного количества масла. Рекомендуется заменять сепаратор в зависимости от окружающих условий, количества пыли в воздушном фильтре, качества смазки и времени эксплуатации, отображаемых на дисплее контроллера. Микроконтроллер напомнит о необходимости замены и установки нового сепаратора в зависимости от настроек времени. Когда на дисплее появится предупреждающее сообщение, немедленно замените старый сепаратор для тонкой очистки масла

6.5

Предохранительный клапан Если он работает неправильно или датчик давления неисправен, давление в масловоздушном ресивере непрерывно возрастает. Когда давление увеличивается до предельно установленного значения предохранительного клапана, происходит срабатывание клапана для сброса давления и исключение аварийной ситуации. Значение давления срабатывания предохранительного клапана откалибровано перед отправкой с завода-изготовителя, поэтому не изменяйте данную настройку.

Основные компоненты системы

6.6

Клапан минимального давления Функции данного компонента описаны ниже:

<u>А.</u> При запуске клапан позволяет облегчить установку давления, необходимого для подачи масла.

В. Поддерживает давление внутри воздухомасляного ресивера на минимальном уровне для предотвращения повреждения сепаратора для тонкой очистки масла из-за перепада давления.

 $\underline{\mathbf{C}}$. При частичной нагрузке или после останова он изолирует воздухомасляный ресивер от системы, как обратный клапан.

6.7

Радиатор охладитель

(С водяным или воздушным охлаждением)

Используется для охлаждения сжатого воздуха. Высокая температура на выходе может повредить осушитель системы или повлиять на его производительность. Если охладитель засорен пылью, тогда снижается эффективность теплообмена. При проведении регламентного техобслуживания необходимо уделять внимание чистоте охладителя.

6.8

Клапан терморегулирования

Он поддерживает температуру нагнетания выше температуры точки росы во избежание конденсирования влаги в масловоздушном ресивере, которая может привести к ухудшению качества и эмульсификации масла. Клапан также защищает компрессор от крайне высокой температуры нагнетания (отсечка происходит при температуре 105 °C), которая может вызвать повреждение механических компонентов и ухудшение качества масла. Принцип работы клапана терморегулирования следующий: когда температура нагнетания слишком высокая, то количество масла, подаваемого в охладитель, увеличивается, в то время как количество обратно поступающего масла уменьшается. Поэтому температура масла, подаваемого в камеру компрессора, уменьшается, и температура нагнетания также уменьшается. Если температура нагнетания слишком низкая, количество масла, которое попадет в охладитель, уменьшается, в то время как количество обратно поступающего масла увеличивается. В результате этого поток масла, подаваемый в камеру компрессора, будет иметь высокую температуру. Это касается и температуры нагнетания. Благодаря подобному механизму температура нагнетания имеет устойчивое значение.

6.9

Охладитель масла

Используется для охлаждения смазочного вещества. Если охладитель заблокирован, то температура нагнетания увеличивается. При проведении регламентного техобслуживания необходимо уделять внимание чистоте охладителя.

6.10

Масляный фильтр

Данный бумажный фильтр захватывает посторонние частицы грязи, которые могут повредить подшипники и другие движущиеся компоненты в масле. Рекомендуется заменять масляный фильтр в зависимости от измеренного давления перед и после масляного фильтра или при проверке качества смазки во время проведения техобслуживания. Новый масляный фильтр устанавливают согласно данных регламентного техобслуживания, заданных в контроллере устройства. Если фильтр заблокирован, тогда количество подаваемой смазки будет недостаточным и температура нагнетания увеличится. Это приведет к повреждению движущихся компонентов или к блокировке винтового ротора.

6.11

Датчик температуры нагнетания Определяет температуру нагнетания и посылает сигнал в микроконтроллер, что помогает поддерживать нормальную работу компрессора. Когда температура нагнетания слишком высокая, микроконтроллер останавливает воздушный компрессор, чтобы избежать его повреждения или возникновения аварийной ситуации.

6.12

Датчик давления посылает сигнал в микроконтроллер для защиты устройства в целом.

Датчик давления

Техническое обслуживание и ремонт

Техническое обслуживание и ремонт

7.1

Воздушный фильтр

7.2

Смазка подшипника электродвигателя

Смазку необходимо повторно добавлять в двигатель для поддержания смазывающего эффекта.

К техническому обслуживанию и ремонту компрессора допускается только обученный и квалифицированный персонал. Перед проведением технического обслуживания или ремонта убедитесь в том, что двигатель и вентиляторный двигатель полностью остановлены, и питание отключено. Во время проведения технического обслуживания или ремонта необходимо повесить на кнопку запуска предупредительный плакат, что «Проводится техническое обслуживание, включать устройство запрещено». Перед осмотром сосудов под давлением или их компонентов необходимо стравить давление их системы.

Если загорится индикатор технического обслуживания, то воздушный фильтр нужно заменить. Срок службы воздушного фильтра составляет 3 000 часов или меньше, в зависимости от качества окружающего воздуха. Воздушный фильтр может быть заменен путем выкручивания фиксирующего винта. Примите во внимание, что прокладка должна прикрепляться к крепежному основанию без зазоров.

А. Интервалы повторной смазки и количество смазки указаны в таблице 7.1.

	Первоначальная	Повторная смазка,	Интервал
кВт	смазка, г	Г	повторной смазки,
	Примечание (1)	Примечание (2)	час
22	100	30	1500
37	100	30	1500
45	200	30	1500
55	200	30	1500
75	200	50	1500
90	100	30	1500
110	300	50	1500
132	200	40	1500
160	200	40	1500
185	200	40	1500
250	250	50	1500
280	250	50	1500
315	250	50	1500

Табл. 7.1

Примечание:

- 1. Первоначальное количество смазки должно быть добавлено после разборки подшипника. 1/3 от общего количества смазки набивается в подшипник, а оставшаяся часть под его кожух. (Первоначальное количество смазки набивается производителем двигателя перед отправкой).
- 2. Смазка должна добавляться с интервалами, указанными в таблице 7.1.
- 3. Набивка большего количества смазки не гарантирует увеличение интервала смазывания. Добавляйте количество смазки согласно таблицы 7.1.
- 4. Если смазка скапливается, и место для хранения полностью занято, тогда возникает дополнительная нагрузка на подшипник из-за сопротивления. Это может привести к возрастанию температуры или утечке смазки. Пожалуйста, снимите крышку дренажного порта (однократно через 2~3 раза набивки смазки) для удаления смазки.
- Избыточное количество смазки может привести к повреждению подшипника.
- Частота смазки зависит от окружающих и рабочих условий. Пожалуйста, придерживайтесь инструкций, указанных на наклейке двигателя, на которой приведены интервалы смазывания и необходимое количество смазки.
 - **В.** Характеристики смазочного вещества показаны в таблице 7.2. Пожалуйста, используйте проверенную смазку для гарантии длительного срока службы подшипника.

Диапазон температуры	Температурный диапазон смазки составляет -20°C-120°C.
Для высокоско-	Густая смазка имеет необходимые характеристики для сопротивления
ростных подшип-	давлению (благодаря масляной пленке). Мягкая смазка имеет необхо-
ников большого	димые характеристики для использования в шумном и вибрационном
диаметра	окружении (не используйте силиконовую смазку).
Сопротивление	Для компонентов с повышенной нагрузкой, таких как ремень, переда-
· '	точный механизм и т.д. следует выбирать смазку стойкую к давлению
нагрузки	(не используйте силиконовую смазку).
Влагостойкость	Смазку с содержанием Na, Ca не следует использовать в помещениях
Dialoctorkocts	с повышенной влажностью.
	Благодаря аналогичной твердости, которая проявляется себя по величине
Вязкость	температуры во время заполнения, возрастающему шуму, аномальной ви-
	брации и смазке в холодное время, следует использовать мягкую смазку.
Количество	Используйте только одобренную смазку.
смазки	используите только одооренную смазку.

Табл. 7.2

Техническое обслуживание и ремонт

7.3

Подшипник компрессора

7.4

Смазка воздушного компрессора

Подшипники компрессора являются изнашиваемыми материалами (их необходимо заменять каждые 30 000 часов), и их срок службы зависит от стандартного или аномального трения, качества подаваемого воздуха, качества смазки и эффективности масляного фильтра. Изношенные подшипники генерируют более высокий уровень шума и вибрации.

Масло для винтового воздушного компрессора имеет специальную формулу. Разрешается использовать только оригинальную смазку. Компрессор поставляется с маслом KRAFTOIL P46. Для наиболее эффективной работы компрессора и увеличения срока службы механических дорогостоящих узлов (винтовой блок), а так же в тяжелых условиях эксплуатации, рекомендуется применять синтетическое масло KRAFTOIL S46. Внимание! При использовании синтетического масла KRAFT-OIL S46 допускается увеличенный интервал использования масла и масляно-воздушного сепаратора до 6000 часов. В противном случае можно серьезно повредить компрессор. Старую смазку необходимо полностью удалить из системы перед добавлением новой смазки; в противном случае срок использования новой смазки будет значительно снижен. Обычно масляный фильтр и сепаратор для тонкой очистки масла должны быть заменены вместе со смазкой.

Для добавления смазки выполните следующее:

- 1. Убедитесь в том, воздушный компрессор отключен от источника электропитания.
- 2. Стравите давление из воздухомасляного бачка.

верхность прокладки перед ее установкой.

- 3. После стравливания давления откройте дренажный клапан воздухомасляного бачка, дайте ему остыть, затем слейте масло в поддон.
- После полного удаления смазки из воздухомасляного бачка и охладителя закройте дренажные клапаны.
- Подайте питание на воздушный компрессор в течение 3 секунд, затем отключите питание.
 - 6. Стравите давление в воздухомасляном бачке, затем повторно откройте дренажные клапаны для удаления остатков смазки.
 - 7. Перед добавлением смазки необходимо плотно закрыть дренажные клапаны воздухомасляного бачка и охладителя.
 - 8. Сначала необходимо заполнить воздухомасляной бачок, степень заполнения которого можно видеть по индикатору уровня масла.
 - 9. Перезапустите воздушный компрессор для проверки, что уровень смазки находится посередине индикатора. Если уровень масла меньше половины, тогда отключите питание, стравите давление и добавьте небольшое количество смазки.
 - 10. Уровень смазки должен находиться не ниже или не намного выше средней метки.

После использования в течение длительного промежутка времени фильтр постепен-

Если сепаратор для тонкой очистки является компонентом вкручивающего типа. Его можно снять с помощью специальных инструментов. Пожалуйста, проверьте, что уплотнительное кольцо и прокладка не повреждены. Нанесите смазку на по-

но загрязняется, что вызывает некоторое падение давления. Чистота сепаратора для тонкой очистки масла влияет на его эффективность. Слишком большое засорение приводит к повышению количества масла в выходном воздухе и увеличению энергопо-

7.5

Сепаратор для тонкой очистки

7.6

Возвратный маслопровод

Периодически проверяйте, что возвратный маслопровод чистый. Высокая температура во время работы возвратного маслопровода считается нормальным явлением. Если он заблокирован, то поверхность трубы нагревается настолько сильно, что к ней нельзя прикоснуться, или в конденсационной воде присутствует повышенное количество масла. При таких обстоятельствах необходимо выполнить чистку маслопровода.

Проверка маслопровода выполняется следующим образом: убедитесь, что сепаратор для тонкой очистки, маслопровод, сочленение, обратный клапан и головка не заблокированы.

7.7

Масляный фильтр

Для нового компрессора масляный фильтр нужно менять через 500 часов эксплуатации. После этого фильтр можно заменять согласно графика регламентного техобслуживания. Эффективность масляного фильтра со временем ухудшается, поэтому его нужно менять во избежание повреждения компрессора. Масляный фильтр следует снимать с помощью специальных инструментов, чтобы избежать деформации кожуха. Под фильтр необходимо установить поддон во избежание пролива масла. Следует прочистить трубопровод перед установкой нового фильтра. Нанесите смазку на поверхность прокладки перед ее установкой. Техническое обслуживание и ремонт

7.8

Клапан терморегулирования

При стандартных условиях перепускная труба клапана терморегулирования закроется при высокой температуре, и откроется при низкой температуре. Данным методом следует проверить работоспособность клапана терморегулирования.

7.9

Сочленение трубопровода

Все сочленения труб воздушного компрессора необходимо периодически проверять на наличие утечек, а гибкие трубопроводы должны поверяться на наличие износа и трещин. Прокладка, уплотнительное кольцо и гибкие трубопроводы необходимо заменять или наносить резьбовой герметик при появлении проблем.

7.10

Клапан управления всасыванием

Поршень клапана управления всасыванием необходимо периодически разбирать для удаления остатков грязи. Добавьте смазку или замените поршневое кольцо, чтобы обеспечить требуемую чувствительность поршня для управления объемом подаваемого воздуха.

7.11

Клапан минимального давления

Клапан минимального давления необходимо периодически разбирать для удаления остатков грязи. Также следует добавлять новую смазку. Уплотнительное кольцо или прокладочное кольцо тарелки клапана необходимо заменить, если оно повреждено.

Периодически проверяйте уплотнительный эффект тарелки клапана, для снижения потерь вследствие утечки.

7.12

Предохранительный клапан

1. Перед отправкой предохранительный клапан проходит процедуру калибровки.
 Не выполняйте повторную регулировку.

2. Необходимо периодически проверять работоспособность предохранительного клапана.

7.13

Электромагнитный клапан режима разгрузки (нормально открытый)

- Если компрессор переключается между режимами нагрузки и разгрузки слишком часто, тогда давление нагрузки и разгрузки необходимо сбросить в соответствии с фактическим потреблением воздуха. В противном случае срок службы электромагнитного клапана разгрузки (нормально открытый) значительно снизится.
- 2. Проверьте работоспособность электромагнитного клапана разгрузки (нормально открытый) или выполняйте периодическую проверку.
- 3. Проверьте место установки электромагнитного клапана разгрузки (нормально открытый).
- а) Разберите электромагнитный клапан разгрузки (нормально открытый) для проверки наличия внутри него инородных частиц.
- b) Проверьте корпус клапана и работоспособность катушки с помощью электрических инструментов, измерив сопротивление катушки.
 - с) Проверьте правильность работы концевого переключателя режима нагрузки и разгрузки (должен присутствовать незначительный шум при переключении).

7.14

Охладитель

7.14.1

Охладитель с воздушным охлаждением

После эксплуатации в течение некоторого периода времени эффективность теплового обмена может быть снижена вследствие появления грязи и скопления пыли на поверхности. При этом температура нагнетания увеличивается. Необходимо периодически выполнять чистку поверхности с помощью сжатого воздуха для восстановления эффективности работы охладителя. График регламентного техобслуживания зависит от качества окружающего воздуха.

comaro

Техническое обслуживание и ремонт

7.14.2

Охладитель с воздушным охлаждением

- 1. Для охладителя с водяным охлаждением необходимо выполнить следующие проверки:
 - а) Перед подачей воды проверьте наличие утечки на сочленении соединительного трубопровода.
- b) Проверьте, что клапаны масляной и водяной линии открыты.
- с) Проверьте наличие утечки на соединении каждого фланца.
- d) Проверьте наличие утечки на выпускных отверстиях и заглушках.
- е) Рекомендуется использовать устройства обработки охлаждаемой воды. В противном случае после некоторого периода времени необходимо разбирать охладитель и выполнять его чистку.
 - 2. После вышеуказанных проверок необходимо запустить охладитель. Обратите внимание на вибрацию и давление воды. При установке охладителя вне помещения необходимо помесить его под навесом и обеспечить качественную вентиляцию.
 - а) Выполняйте периодическую проверку один раз в полгода или один раз в год.
 - b) Необходимо проверять состояние внутренней части трубопровода при разборке крышки обратного трубопровода воды.
 - с) В некоторых регионах температура в зимний период может опускаться ниже нуля по Цельсию, что может вызвать замерзание воды и повреждение трубопровода.
 После использования компрессора необходимо слить охлажденную воду.
- Для контроля эрозии и предотвращения утечки, пожалуйста, периодически разбирайте, проверяйте, чистите и выполняйте ремонт.

а) Метод разборки

Полностью заблокируйте входные и выходные отверстия подачи воды и масла. Слейте жидкость из соединительного трубопровода и охладителя масла. Для облегчения установки в будущем помечайте соединяемые компоненты. Снимите внутренние соединительные компоненты для изолирования охладителя масла. Ослабьте гайки на опоре, снимите неподвижное кольцо и перенесите охладитель масла в удобное место (данные работы можно также выполнять без разборки охладителя). Разберите накладные пластины впуска и выпуска воды, снимите уплотнительные компоненты и уплотнительное неподвижное кольцо (стальной компонент). Поставьте вертикально охлаждающую часть и кожух, затем выньте внутренний кожух. Внутренний кожух необходимо вынимать вертикально, чтобы не повредить уплотняющую поверхность трубной пластины. Процесс разборки считается завершенным, когда вынут внутренний кожух. Почистите внутреннюю и внешнюю охлаждающую трубу, внутреннюю часть кожуха, сочленения и впускное и выпускное отверстие масла. В зависимости от степени загрязнения и его типа, для чистки устройства используйте бензин для химической чистки, пар, горячий керосин, моющее средство и т.д. Если количество грязи в охладительной трубе слишком большое, тогда ее нужно прочистить с помощью нейлоновой щетки или стальной кочерги. Не повредите уплотняющую поверхность. При использовании моющего средства, содержащего воду, необходимо полностью высушить охладитель (примечание: без особой необходимости не разбирайте охлаждающий сердечник).

b) Метод сборки

Метод сборки проходит в порядке обратном методу разборки. Кроме того необходимо установить новое уплотняющее кольцо. Установите охладитель масла в первоначальное положение и зафиксируете его с помощью неподвижного кольца на опоре.

с) После установки всех компонентов необходимо проверить уровень давления. Выполните следующую процедуру: закройте выпускное отверстие масла и добавьте масло в трубопровод. Повысьте давление и поддерживайте его на уровне 10кг/см2 G в течение 5 минут. Далее увеличьте давление до величины 15кг/см2 G и поддерживайте его в течение 20-30 минут. Убедитесь, что давление осталось на уровне 15кг/см2 G, и слейте масло. Установите охладитель масла на свое место.

7.15

Электрическая изоляция

Периодически проверяйте величину изоляции двигателя компрессора и вентилятора. При подаче напряжения 500 В DC значение изоляции должно составить 5 МΩ. В противном случае выясните и устраните причину плохой изоляции.

7.16

Периодический осмотр и чистка

После эксплуатации компрессора в течение длительного периода времени необходимо провести техобслуживание, согласно графика регламентных работ. Техобслуживание должно проводиться только уполномоченным дилером.

Защитное ограждение и предупредительное устройство

Защитное ограждение и предупредительное устройство

8.1

Защита от перегрузки двигателя

Воздушная компрессорная установка имеет в своем составе два двигателя. Один из них – главный двигатель воздушной головки, а второй представляет собой двигатель охлаждающего вентилятора. При стандартных условиях эксплуатации ток главного двигателя не должен превышать значение механизма автоматического отключения, устанавливаемого в микроконтроллере. Если ток двигателя превышает верхнее предельное значение электрического защитного устройства, то микроконтроллер автоматически прерывает подачу электропитания и останавливает воздушный компрессор. Воздушный компрессор не запустится повторно, пока на него не будет подано электропитание.

Внимание: Отклонения напряжения должны находиться в диапазоне ≤-10% ~ +10%. Асимметрия напряжения между фазами не должна превышать 3%, в противном случае температура двигателя будет значительно возрастать. Если асимметрия напряжения достигнет величины 3.5%, температура двигателя увеличится на 25%.

Причины перегрузки двигателя:

(1) Ручная ошибка: Измените давление нагнетания, или выполните повторную регулировку на системе и т.п.

(2) Механическое повреждение: Общий износ двигателя, обрыв фазы, предохранительный клапан не срабатывает, неправильные настройки системы, блокировка сепаратора для тонкой очистки масла.

Если наблюдается перегрузка двигателя, тогда незамедлительно обратитесь к производителю оборудования для проведения осмотра. Необходимо обязательно определить и устранить причину проблемы.

8.2

Высокая температура нагнетания

Установленное значение температуры нагнетания составляет 105 °C. Если температура нагнетания достигает величины 105 °C, то происходит автоматический останов компрессора. Неисправность охладителя масла является одной из главных причин возрастания температуры нагнетания. Для охладителя масла с воздушным охлаждением, если теплообменник засорен пылью, охлаждающий воздух не сможет свободно перемещаться. Температура масла и температура нагнетания будут увеличиваться. Через определенный период времени пыль на ребрах теплообменника должна удаляться воздухом под низким давлением. Если посторонние вещества не могут быть полностью удалены с ребер после данной процедуры, тогда для их чистки лучше воспользоваться моющим средством или растворителем. Максимальная температура окружающей среды возле воздушного компрессора не должна превышать 45 °C. При более высокой температуре окружающей среды происходит повышение температуры нагнетания. Поэтому для установки воздушного компрессора необходимо выбрать надлежащее место с низкой температурой окружающей среды и хорошей вентиляцией.

8.3

Техобслуживание фильтра

График проведения регламентного техобслуживания воздушного фильтра, масляного фильтра и сепаратора для тонкой очистки устанавливается в микроконтроллере. Предупреждающий индикатор загорается, когда необходимо заменить фильтр.

8.4

Дополнительная защита и предупреждения

Пожалуйста, обратитесь к данному руководству пользователя или каталогу.

Защитное ограждение и предупредительное устройство

8.5

Поиск и устранение неисправностей

Проблема	Возможная причина	Метод устранения
	Неисправность цепи управления	Проверьте управляющее напряжение, предохранитель и проводку цепи управления
Проблемы при запуске	Активирован аварийный выключатель	Проверьте, активирован ли авариный выключатель или затянутость его контактов
устройства	Не подается питание	Убедитесь, что выключатель питания включен.
	Слишком низкое напряжение	Слишком маленький диаметр проводки -> Замените проводку. Заниженное напряжение питания -> Выполните регулировку
	Потребление воздуха выше, чем производительность компрессора	Потребуется использовать не- сколько компрессоров
	Неисправен клапан управ- ления всасыванием	Проверьте и отремонтируйте
	Утечка в системе	Проверьте трубопровод и отре- монтируйте его
	Воздушный фильтр засорен	Замените воздушный фильтр
Слишком низкое давление системы	Слишком низкое значение настройки давления в контроллере	Проверьте значение настройки и датчик давления
	Электромагнитный клапан разгрузки (нормально открытый) не закрывается	Проверьте наличие питания на электромагнитном клапане, или что клапан не заблокирован. Необходимо также проверить выходной сигнал от контроллера
	Заблокирован трубопровод или клапан полностью не открывается	Проверьте давление в каждой части воздушного компрессора
	Неправильно установлен дренажный трубопровод системы	Измените расположение дренаж- ного трубопровода
Слишком высокий уровень влажности в системе	Недостаточный тепловой обмен в охладителе	Охладитель слишком загрязнен. Почистите охладитель
	Осушитель не установлен или неправильно работает	Установите осушитель или про- верьте его работу
Слишком высокий перепад	Слишком большое потре- бление воздуха за короткий промежуток времени	Увеличьте объем баллона для хранения газа
давления	Слишком большая разница давления между режимами нагрузки и разгрузки	Измените значение настройки давления
	Утечка в системе смазки	Проверьте наличие утечки в масляном трубопроводе и уплотнительных компонентах и устраните повреждение
Слишком высокое содер-	Заблокирован сепаратор для тонкой очистки	Замените сепаратор для тонкой очистки
жание масла в воздухе. Слишком высокое потре- бление масла	Утечка в сепараторе для тонкой очистки	Проверьте сепаратор для тонкой очистки
Grativic ividesta	Заблокирован возвратный маслопровод	Проверьте все компоненты возвратного маслопровода
	Воздушный компрессор работает при пониженном номинальном давлении	Уменьшите потребление воздуха, или дайте компрессору проработать при номинальном давлении

Защитное ограждение и предупредительное устройство

Проблема	Возможная причина	Метоп устранения		
проолема	Возможная причина	Метод устранения		
	Нарушена работа системы трансмиссии	Неправильная соосность между двигателем и воздушной головкой Ослабла соединительная муфта. Установите новое резиновое кольцо		
	Подшипники в воздушной головке изношены	Замените подшипник и убедитесь, что основная проблема была в износе подшипника		
Слишком высокий уровень вибрации или шума	Подшипники в электродви- гателе изношены	Замените подшипник и убедитесь, что основная проблема была в износе подшипника		
	Ослабли соединения неко- торых компонентов	Затяните все соединения компонентов		
	Неправильное размещение компрессора или трубопровода	Усильте монтажное основание или опору. Проверьте соединение трубопровода		
	Компрессор работает с перебоями или повреждено уплотнение вала	Устраните причины потери масла или высокой эксплуатационной температуры		
	Неправильно установлено значение давления в контр- оллере	Сбросьте значение давления		
Срабатывает предохрани- тельный клапан	Неисправен датчик давле- ния	Фактическое давление выше, чем давление, измеренное датчиком. Проверьте или почистите датчик давления		
	Неисправен контроллер	Откорректируйте сигнал ввода / вывода в контроллере		
	Неисправен предохрани- тельный клапан	Замените предохранительный клапан		
	Смешаны смазочные вещества от различных производителей	Полностью слейте масло из системы и добавьте новое масло		
	При техобслуживании из системы полностью не удалена старая смазка	Полностью слейте масло из системы и добавьте новое масло		
Слишком короткий срок службы смазочного вещества	Компрессор работает при повышенной темпера- туре	Найдите основную причину повышенной температуры и отрегулируйте ее значение до приемлемого уровня		
	Компрессор работает при пониженной темпера- туре	При работе ниже температуры точки росы в системе будет присутствовать конденсационная вода, что вызовет ухудшение качества масла		
	Различный класс используе- мого масла	Используйте одобренное масло КRAFT-OIL Р 46 или KRAFT-OIL S 46		

Спецификация винтового воздушного компрессора

Спецификация винтового воздушного компрессора

Модель	MD		37 kW	45 kW	55 kW	75 kW	90 kW	110 kW	132 kW	160 kW	185 kW	250 kW	315 kW
		8, бар	6.5	7.6	9.8	13.1	15.6	20.0	23.2	28.2	32.3	41.8	52.3
Компрессор	Поток воздуха (м3/мин)	10, бар	5.6	6.0	9.0	11.8	14.0	17.8	20.7	25.2	29.1	37.7	47.1
		13, бар	4.6	5.8	7.6	10.1	12.4	14.7	16.8	21.1	23.8	32.5	41.3
	Температура нагнетаемого воздуха, °C		Окружающая температура +15 °C (Когда температура окружающей среды ниже 30 °C)										
Компр	Тип трансмиссии		Приводная муфта										
	Регулятор произ	водительности		Опционально. Версия I									
	Объем смазочно	го вещества, л	22,5	22,5	60	65	70	80	85	90	95	160	160
	Максимальная о температура	кружающая				l.		45 °C					
	Номинальная мо лс/кВт	ощность,	37	45	55	75	90	110	132	160	185	250	315
	Напряжение, В			380 B									
тель	Частота, Гц		50										
Двигатель	Тип	TEFC											
	Класс изоляции		Класс F										
	Тип запуска		Звезда-треугольник										
	С воздушным ох	лаждением											
	Мощность вентилятора, кВт		0.75	1.5	1.5	0.37*2	0.75*2	0.75*2	1.5*2	3.0*2	3.0*2	0.75*4	0.75*4
итель	Объем охлаждающего воздуха, м³/мин		125	183	194	194	320	470	500	650	650	1280	1280
Охладитель	С водяным охлах	ждением		•					•				
	Давление воды на впуске, бар		4	4	4	4	4	4	4	4	4	4	4
	Объем воды, л/м	Объем воды, л/мин		70	84	84	116	266	266	340	340	700	850
Средств	ва защиты		Предохранительный клапан, высокая температура нагнетания, давление, перегрузка по току, обрыв фазы, опрок дывание фазы							, опроки-			
Индика	ция техобслуживан	RNH		Возд	душный фи	льтр, масля	ный фильт	гр, сепарат	ор для тон	кой очистки	1, замена м	асла	
Микроконтроллер Цифровое управление индикацией температуры/давления, управление автоматическим пуском/остановом, Управление с блокировкой ведущий/ведомый (опция), Масштабируемый главный мон													
0 =	Длина, мм		1550	1690	1950	1960	2400	2650	2500	2950	2950	3200	3400
Внешние	Ширина, мм		1100	1200	1290	1500	1450	1640	1640	2100	2100	2100	2100
	Высота, мм		1570	1560	1500	1500	1670	1670	1670	2000	2000	2280	2100
Вес бру	тто, кг		835	850	1700	1900	2500	3100	3200	3800	3950	4400	5000
Размер выпуска воздуха, дюйм 1 1/2" 1 1/2" 2" 2-1/2" 2-1/2" 3" 3" 3" 4" 4" 4"					4"	5"							

График технического обслуживания

Приложение 1.

График технического обслуживания

О Чистка.

 О Регулировка / Проверка.
 О Замена.

	MACCKOI O OOC.			-		Worka.	- 1 or yana	POBRATTI	оверка.	Calviori
		_		500 часов	1500 часов	3000 часов	6000 часов	12000 часов	18000 часов	30000 часов
Компонент	Описание	День	Неделя	Месяц	Четверть	Полгода	Год	Раз в дав года	Раз в три года	Раз в пять ле
Световая и звуковая сигнализация на панели	Проверка аварии световой или звуковой сигнализации	0						112 -112	j112	
Температура нагнетания	Проверка (70~95°C)	0								
Конденсационная вода в воздухомасляном бачке	Слив	0								
Уровень масла	Проверка	0								
Прозрачная труба и основной комплект	Проверка / замена	0					•			
Трубопровод (резиновый / металлический)	Проверка / замена	0						•		
Воздуховпускная труба	Проверка / замена					0		•		
Охладитель	Чистка		0						0	
Охлаждающий вентилятор	Чистка		0							
Воздушный фильтр	Чистка / замена		0		0	•				
Фильтр грубой очистки	Проверка / чистка		0							
Магнитный пускатель	Проверка / чистка		0				0		•	
Соединительная муфта	Регулировка / замена									•
Масляный фильтр	Замена			Новый		•				
Двигатель	Добавление масла				0					
Уплотнение вала компрес- сора	Проверка / замена					0				•
Смазка (синтетическая)	Добавление / замена масла			Новый •		•				
Сепаратор для тонкой очистки	Замена					•				
Электрическая изоляция	Проверка всех фаз и за- земления						0			
Трубопроводный коннектор	Проверка утечек						0			
Клапан терморегулирования	Проверка / замена						0	•		
Клапан управления всасыванием	Проверка / чистка / замена						0	•		
Клапан минимального давления	Проверка / чистка / замена						0	•		
Дозировочный клапан	Проверка / чистка / замена						0	•		
Предохранительный клапан	Проверка / чистка / замена						0			
Электромагнитный клапан	Проверка / чистка / замена					0		•		
Датчик давления	Проверка / замена						0		•	
Датчик температуры	Проверка / замена						0		•	
Подшипник компрессора	Проверка / замена							0		•

Примечание

Предлагаемый график регламентного техобслуживания приведен при использование масла KRAFT-OIL Р46 и может изменяться в соответствии с окружающими и рабочими условиями.

График технического обслуживания / Технические характеристики

Внимание!

- 1. Вышеупомянутый график замены смазки предназначен для стандартной работы компрессора. Если компрессор работает при повышенной температуре, то срок службы масла снижается наполовину.
- 2. При стандартных условиях эксплуатации (отсутствует пыль, используется рекомендуемое масло, температура окружающей среды ниже 45 °C), масляный фильтр и воздушный фильтр могут быть заменены через 3 000 часов. Сепаратор для тонкой очистки масла следует менять через 3 000 часов.
- 3. Срок службы масляного фильтра, воздушного фильтра, и сепаратора для тонкой очистки составляет только 60% от указанных значений графика, если компрессор эксплуатируется в суровых окружающих условиях.
- 4. Производитель не несет ответственность за последующее сервисное обслуживание или техобслуживание и исключает претензии по гарантии, если компрессор эксплуатировался в суровых окружающих условиях, без использования рекомендованной смазки и оригинальных расходных материалов.
 - 5. При использовании синтетического масла KRAFT-OIL S46 допускается увеличенный интервал использования масла и масляно-воздушного сепаратора до 6000 часов.

Приложение 2.

Технические характеристики

модель	Мощность, кВт	Давление, бар	Производительность, л/мин	Вес в упаковке, кг
MD 37-08	37	8	6500	785
MD 37-10	37	10	5600	835
MD 37-13	37	13	5400	835
MD 37-08 I	37	8	6500	835
MD 37-10 I	37	10	5600	835
MD 37-13 I	37	13	5400	835
MD 45-08	45	8	7600	850
MD 45-10	45	10	6000	850
MD 45-13	45	13	5600	850
MD 45-08 I	45	8	7600	900
MD 45-10 I	45	10	6000	900
MD 45-13 I	45	13	5600	900
MD 55-08	55	8	9800	1700
MD 55-10	55	10	9000	1700
MD 55-13	55	13	8500	1700
MD 55-08 I	55	8	9800	1720
MD 55-10 I	55	10	9000	1720
MD 55-13 I	55	13	8500	1720
MD 75-08	75	8	13100	1900
MD 75-10	75	10	11800	1900
MD 75-13	75	13	11000	1900
MD 75-08 I	75	8	13100	2040
MD 75-10 I	75	10	11800	2040
MD 75-13 I	75	13	11000	2040

Технические характеристики

			_	_
МОДЕЛЬ	Мощность, кВт	Давление, бар	Производительность, л/мин	Вес в упаковке, кг
MD 90-08	90	8	15600	2500
MD 90-10	90	10	14000	2500
MD 90-13	90	13	12800	2500
MD 90-08 I	90	8	15600	2670
MD 90-10 I	90	10	14000	2670
MD 90-13 I	90	13	12800	2670
MD 110-08	110	8	20000	3100
MD 110-10	110	10	17800	3100
MD 110-13	110	13	16400	3100
MD 110-08 I	110	8	20000	3240
MD 110-10 I	110	10	17800	3240
MD 110-13 I	110	13	16400	3240
MD 132-08	132	8	23200	3200
MD 132-10	132	10	20700	3200
MD 132-13	132	13	18200	3200
MD 132-08 I	132	8	23200	3320
MD 132-10 I	132	10	20700	3320
MD 132-13 I	132	13	18200	3320
MD 160-08	160	8	28200	3800
MD 160-10	160	10	25200	3800
MD 160-13	160	13	23400	3800
MD 160-08 I	160	8	28200	3940
MD 160-10 I	160	10	25200	3940
MD 160-13 I	160	13	23400	3940
MD 185-08	185	8	32300	3950
MD 185-10	185	10	29100	3950
MD 185-13	185	13	25700	3950
MD 185-08 I	185	8	32300	4100
MD 185-10 I	185	10	29100	4100
MD 185-13 I	185	13	25700	4100
MD 250-08	250	8	41800	4400
MD 250-10	250	10	37700	4400
MD 250-13	250	13	33900	4400
MD 250-08 I	250	8	41800	4550
MD 250-10 I	250	10	37700	4550
MD 250-13 I	250	13	33900	4550
MD 315-08	315	8	52300	5000
MD 315-10	315	10	47100	5000
MD 315-13	315	13	42500	5000
MD 315-08 I	315	8	52300	5150
MD 315-10 I	315	10	47100	5150
MD 315-13 I	315	13	42500	5150

Технические характеристики

Приложение 3.

Коды заказа расходных материалов

Масляный фильтр						
Модель компрессора, где установлено	Код заказа	Период замены,ч				
37,45,55 кВт	03.01.21204	500+3000				
75,90,110,132,160,185,250	03.01.21203	500+3000				

Воздушный фильтр						
Модель компрессора, где установлено	Код заказа	Период замены,ч				
37,45	03.02.12302	3000				
55	03.02.12404	3000				
75	03.02.12504	3000				
90, 110	03.02.12505	3000				
132	03.02.12604	3000				
160	03.02.21126	3000				
185, 250	03.02.12701	3000				

Сепаратор							
Модель компрессора, где установлено	Код заказа	Период замены (при использова- ние масла KRAFT- OIL P46), ч					
37,45	03.03.21317	3000					
55,75,90	03.03.21303	3000					
110,132,160	03.03.21306	3000					
185, 250	03.03.21308	3000					

Масло			
Модель компрессора	Объем, л	Код заказа	Период замены,ч
37	22,5		
45	22,5		
55	60		
75	65	KRAFT-OIL P 46	500+3000
90	70		
110	80	KRAFT-OIL S 46	500+6000
132	85	NNAF I-UIL 5 40	500+6000
160	90		
185	95		
250	160		

Внимание!

При использовании синтетического масла KRAFT-OIL S46 допускается увеличенный интервал использования масла и масляно-воздушного сепаратора до 6000 часов.